If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6x^2=104
We move all terms to the left:
6x^2-(104)=0
a = 6; b = 0; c = -104;
Δ = b2-4ac
Δ = 02-4·6·(-104)
Δ = 2496
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2496}=\sqrt{64*39}=\sqrt{64}*\sqrt{39}=8\sqrt{39}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{39}}{2*6}=\frac{0-8\sqrt{39}}{12} =-\frac{8\sqrt{39}}{12} =-\frac{2\sqrt{39}}{3} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{39}}{2*6}=\frac{0+8\sqrt{39}}{12} =\frac{8\sqrt{39}}{12} =\frac{2\sqrt{39}}{3} $
| 4-3x+7x=8,7 | | 8=x=4 | | (3x-35)=(2x+25) | | 10+2=8x16 | | 133=(2x-15) | | x+x(0.1)=5,000 | | 8xX8=48 | | 5(2x–3)=7x+3 | | 11x–9=3x–9 | | 5z+3=11+2z | | 1/y-1/5y+1/(y+1)=5/2y | | 11x-14=7x+14 | | 3p-1=23 | | 2(w+(3w-6))=340 | | 250-90=c | | (2x-14)(x-7)=0 | | -2x^2-4x=1 | | 2x+5-3x=7+4x-1 | | (6x-3)+5=14 | | 3(-2x+1)+4=11 | | (22/7)(44)=2r | | 35/(1.25x-x)=1.75 | | 7x^2=7x+9 | | 2(x+7=3(2x-2) | | 0=-16t^2+17t+7 | | 0=-16t^2+17t=7 | | 2x–3(5–4x)=13 | | 2(x)+3(x+1)+4(x+2)=74 | | n+n+22=180 | | 14n-8=13 | | x+381=-81 | | 2(x)+3(x+2)+4(x+2)=74 |